skip to main content


Search for: All records

Creators/Authors contains: "Fu, Roger R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The paleomagnetic record is an archive of Earth’s geophysical history, informing reconstructions of ancient plate motions and probing the core via the geodynamo. We report a robust 3.25-billion-year-old (Ga) paleomagnetic pole from the East Pilbara Craton, Western Australia. Together with previous results from the East Pilbara between 3.34 and 3.18 Ga, this pole enables the oldest reconstruction of time-resolved lithospheric motions, documenting 160 My of both latitudinal drift and rotation at rates of at least 0.55°/My. Motions of this style, rate, and duration are difficult to reconcile with true polar wander or stagnant-lid geodynamics, arguing strongly for mobile-lid geodynamics by 3.25 Ga. Additionally, this pole includes the oldest documented geomagnetic reversal, reflecting a stably dipolar, core-generated Archean dynamo. 
    more » « less
  2. Obtaining estimates of Earth’s magnetic field strength in deep time is complicated by nonideal rock magnetic behavior in many igneous rocks. In this study, we target anorthosite xenoliths that cooled and acquired their magnetization within ca. 1,092 Ma shallowly emplaced diabase intrusions of the North American Midcontinent Rift. In contrast to the diabase which fails to provide reliable paleointensity estimates, the anorthosite xenoliths are unusually high-fidelity recorders yielding high-quality, single-slope paleointensity results that are consistent at specimen and site levels. An average value of ∼83 ZAm 2 for the virtual dipole moment from the anorthosite xenoliths, with the highest site-level values up to ∼129 ZAm 2 , is higher than that of the dipole component of Earth’s magnetic field today and rivals the highest values in the paleointensity database. Such high intensities recorded by the anorthosite xenoliths require the existence of a strongly powered geodynamo at the time. Together with previous paleointensity data from other Midcontinent Rift rocks, these results indicate that a dynamo with strong power sources persisted for more than 14 My ca. 1.1 Ga. These data are inconsistent with there being a progressive monotonic decay of Earth’s dynamo strength through the Proterozoic Eon and could challenge the hypothesis of a young inner core. The multiple observed paleointensity transitions from weak to strong in the Paleozoic and the Proterozoic present challenges in identifying the onset of inner core nucleation based on paleointensity records alone. 
    more » « less
  3. A potential record of Earth’s magnetic field going back 4.2 billion years (Ga) ago is carried by magnetite inclusions in zircon grains from the Jack Hills. This magnetite may be secondary in nature, however, meaning that the magnetic record is much younger than the zircon crystallization age. Here, we use atom probe tomography to show that Pb-bearing nanoclusters in magnetite-bearing Jack Hills zircons formed during two discrete events at 3.4 and <2 Ga. The older population of clusters contains no detectable Fe, whereas roughly half of the younger population of clusters is Fe bearing. This result shows that the Fe required to form secondary magnetite entered the zircon sometime after 3.4 Ga and that remobilization of Pb and Fe during an annealing event occurred more than 1 Ga after deposition of the Jack Hills sediment at 3 Ga. The ability to date Fe mobility linked to secondary magnetite formation provides new possibilities to improve our knowledge of the Archean geodynamo.

     
    more » « less
  4. Abstract

    In well‐buffered modern soils, higher annual rainfall is associated with enhanced soil ferrimagnetic mineral content, especially of ultrafine particles that result in distinctive rock magnetic properties. Hence, paleosol magnetism has been widely used as a paleoprecipitation proxy. Identifying the dominant mechanism(s) of magnetic enhancement in a given sample is critical for reliable inference of paleoprecipitation. Here, we use high‐resolution magnetic field and electron microscopy to identify the grain‐scale setting and formation pathway of magnetic enhancement in two modern soils developed in higher (∼580 mm/y) and lower (∼190 mm/y) precipitation settings from the Qilianshan Range, China. We found that both soils contain 1–30 μm aeolian Fe‐oxide grains with indistinguishable rock magnetic properties, while the higher‐precipitation soil contains an additional population of ultrafine (<150 nm) magnetically distinct magnetite grains. We show that the in situ precipitation of these ultrafine particles, likely during wet‐dry cycling, is the only significant magnetic enhancement mechanism in this soil. These results demonstrate the potential of quantum diamond microscope magnetic microscopy to extract magnetic information from distinct, even intimately mixed, grain populations. This information can be used to evaluate the contribution of distinct enhancement mechanisms to the total magnetization.

     
    more » « less
  5. null (Ed.)
    The mode and rates of tectonic processes and lithospheric growth during the Archean [4.0 to 2.5 billion years (Ga) ago] are subjects of considerable debate. Paleomagnetism may contribute to the discussion by quantifying past plate velocities. We report a paleomagnetic pole for the ~3180 million year (Ma) old Honeyeater Basalt of the East Pilbara Craton, Western Australia, supported by a positive fold test and micromagnetic imaging. Comparison of the 44°±15° Honeyeater Basalt paleolatitude with previously reported paleolatitudes requires that the average latitudinal drift rate of the East Pilbara was ≥2.5 cm/year during the ~170 Ma preceding 3180 Ma ago, a velocity comparable with those of modern plates. This result is the earliest unambiguous evidence yet uncovered for long-range lithospheric motion. Assuming this motion is due primarily to plate motion instead of true polar wander, the result is consistent with uniformitarian or episodic tectonic processes in place by 3.2 Ga ago. 
    more » « less
  6. Abstract

    Due to a dearth of data from high‐latitude paleomagnetic sites, it is not currently clear if the geocentric axial dipole (GAD) hypothesis accurately describes the long‐term behavior of the geomagnetic field at high latitudes. Here we present new paleomagnetic and paleointensity data from the James Ross Island (JRI) volcanic group, located on the Antarctic Peninsula. This data set addresses a notable lack of data from the 60°–70°S latitude bin and includes 251 samples from 31 sites, spanning 0.99–6.8 Ma in age. We also include positive fold, conglomerate, and baked contact tests. Paleointensity data from three methods (Thellier‐Thellier, pseudo‐Thellier, and Tsunakawa‐Shaw) were collected from all sites. The Thellier‐Thellier method had low yields and produced unreliable data, likely due to sample alteration during heating. Results from the Tsunakawa‐Shaw and pseudo‐Thellier methods were more consistent, and we found a bimodal distribution of paleointensity estimates. Most sites yielded either <15 μT or >40 μT, which together span a range of estimates from long‐term geomagnetic field models, but do not favor any model in particular. Alternating‐field demagnetization of these samples, when combined with preexisting data, yields a revised paleomagnetic pole of −87.5°, 025°,α95 = 3.6° for the Antarctic Peninsula over the last ∼5 Ma, which suggests that the current data set is sufficiently large to “average out” secular variation. Finally, the C2r/C2n transition was probably found at a site on JRI, and further geochronological and paleomagnetic study of these units could refine the age of this reversal.

     
    more » « less
  7. Abstract

    The martian dynamo’s strength and duration are essential for understanding Mars' habitability and deep interior dynamics. Although most northern volcanic terranes were likely emplaced after the martian dynamo ceased, recent data from the InSight mission show stronger than predicted crustal fields. Studying young volcanic martian meteorites offers a precise, complementary method to characterize the strength of the martian crustal field and examine its implications for past dynamo activity. We present the first rock and paleomagnetic study of nine mutually oriented samples from the martian Nakhlite meteorite Miller Range (MIL) 03346, which is well‐suited for paleomagnetic analysis due to its well‐known age (1,368 ± 83 Ma) and lack of significant aqueous, thermal, and shock overprinting. Rock magnetic analysis, including quantum diamond microscope imaging, showed that the natural remanent magnetization (NRM) is carried by Ti‐magnetite crystals containing µm‐scale ilmenite exsolution lamellae, which can accurately record ancient magnetic fields. Demagnetization of the NRM revealed a high coercivity magnetization interpreted to date from the age of eruption based on its intensity, unidirectionality, and a passing fusion crust baked contact test. Paleointensities of four samples reveal a 5.1 ± 1.5 µT paleofield, representing the most reliable martian paleointensity estimates to‐date and stronger than the 2 µT surface fields measured by InSight. Modeling shows that the observed fields can be explained by an older subsurface magnetized layer without a late, active dynamo and support a deeply buried, highly magnetized crust in the northern hemisphere of Mars. These results provide corroborating evidence for strong, small‐scale crustal fields on Mars.

     
    more » « less